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Jack of All Trades, Master of None: Comparing Human and Machine Problem Solving

Problem-solving processes are one of the most practical benefits of intelligence; the

better the processes we can come up with, the more effective we (and the machines we build)

will be in most applications. Different tasks have different levels of complexity, depending on

how they’re structured. Solving mathematical problems is a relatively low-complexity task, since

it follows a logical series of steps and has a single correct answer. Games like chess are more

complex, since they often require a “search” of many possible options or solutions to the

problem. Vision and language are highly complex, requiring us to identify objects and

connections between ideas. Computers perform really well at low- and moderate-complexity

problems, but tend to do poorly with these higher-complexity tasks. Humans, on the other hand,

can paradoxically struggle more with these lower-complexity tasks, but can see and converse

very naturally.

The reasons for this seem to be evolutionary. The human problem-solving process

developed to be widely generalizable, because that provided the highest benefit to survival and

reproduction; as the saying goes, evolution uses “whatever’s in the room,” meaning a

problem-solving apparatus which can be reused for different tasks tends to work well (Weller,

2015). Our use of symbolic & spatial reasoning helps enable this approach, as noted by Fabry &

Pantsar (2019). However, this general process tends to be less effective for a given task than a

task-specific process would be, because it’s based on heuristics and reformulations of the

problem, which can decrease accuracy and increase the steps needed to complete the task..
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In contrast, machine problem solving methods tend to be specialized for a single task,

because that’s been the modern approach to AI. The process of research, where the next

generation of AI models are built by making small improvements to previous ones, takes the

place of biological evolution in driving the development of intelligent agents. The particular

pressures we apply have “artificially selected” these models to perform well at one task, rather

than generalizing to many, and the results bear this out. Simple machine techniques can

outperform humans at specific low-complexity tasks, like chess, and even more complex ones

like simple customer assistance (Xu et al., 2020), but are still struggling with highly complex

tasks. Of course, part of the widespread adoption of this specialization approach is due to the fact

that generalizable machine learning is difficult to do, but the selective pressures are still there

impacting the development of the field.

Essentially, while humans developed a general, heuristic-driven, approximate problem

solving process to fill a generalist evolutionary niche, the processes driving the “evolution” or

progress of AI select for systems specialized to particular tasks. This suggests that the pursuit of

artificial general intelligence -an artificial intelligence with human-level capability - could

benefit from a radical shift in perspective towards a more unified generalist model, rather than

trying to combine isolated systems into one generally intelligent agent. To a certain degree, this

has been borne out; recent developments in natural language processing like the BERT and

GPT-3 models, which can perform better on specific tasks due to a general understanding of the

structure of language, indicate that generalization is a powerful tool. Though these models

require significant pre-training time & storage space (Brown, 2020), their high performance is a

promising sign for the future of AI.
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Human Problem-solving

From some perspectives, the human problem-solving process provides a good goal for

the performance and design of AI systems. Interestingly, though, it functions in a different way

to most current approaches to AI. Fabry & Pantsar argue that, particularly for mathematical

problems, our problem-solving approach is largely driven by symbolic and spatial methods (for

example, Gauss’s method of summing consecutive integers1). These symbolic methods aren’t

what we would consider computationally optimal - they require rearranging or reformulating the

problem, which can often entail more “operations” than simply performing the calculation.

However, they can be considered “humanly optimal” in that they co-opt neural pathways used

for other spatial tasks, allowing them to benefit from more frequent use and development. These

methods also benefit from enculturation; they effectively use a body of skills that are culturally

learned from other cognitive agents during development (Fabry & Pantsar, 2019). The

combination of these factors allows symbolic methods to be more effectively employed in human

problem-solving than the straightforward, sequential methods we use to build machine systems..

This co-opting of spatial neural pathways in human problem-solving is also a

consequence of the broader framework of evolutionary function. Evolution “uses whatever is in

the room,” according to Parkinson & Wheatley (2015), repurposing existing biological/cognitive

components to solve new evolutionary problems that may arise. This evolutionary repurposing is

evidenced in many of our social mechanisms; for example, humans use similar neural structures

to process spatial, temporal, and social distance (Parkinson et al., 2014). Evolutionary

repurposing happens through genetic change over generations, but it’s also possible for the brain

1 Gauss’s method entails breaking the sum into pairs of numbers summing to n + 1, then multiplying

these, a more spatially intuitive interpretation.
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to shift within a single lifetime. This shorter-term counterpart is cultural repurposing, wherein we

adopt new uses for existing structures through neuroplasticity. Cultural repurposing is what

enables Fabry & Pantsar’s enculturated problem-solving techniques; these methods are “stored”

in culture and taught during the development process, allowing them to take advantage of the

existing neural structures for spatial ability (Fabry & Pantsar, 2019).

In this context, our tendency towards symbolic and spatial reasoning takes on a new

aspect: it’s what allowed us to utilize our powerful cognitive machinery in a way that best

generalized to the various social and survival tasks we needed to perform. Having a

well-developed spatial ability in a world where success depends on knowing where we are is

important, and when there are other agents around us with similarly advanced cognitive abilities,

success will also depend on how well we can build and understand beneficial social dynamics.

Evolutionarily speaking, it “makes sense” to use the same neural equipment for analogous tasks.

It also lets us generalize to tasks we haven’t previously seen; if we can form an analogy to a task

we’ve done before, we can use similar processes and pathways to solve it.

These processes together with our specialized neural structures allow us to perform well

on a wide variety of complex tasks, like vision and language. Xu et al. (2020) found that humans

outperform AI-based chatbots for answering complex customer questions. However, machine

problem solvers tend to outperform us on more straightforward tasks like math problems, from

simple addition to multivariate calculus, and even for simpler customer service tasks. Our

processes of manipulating symbols generalize very well, but aren’t as efficient as physical

structures dedicated to performing these particular tasks.
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Machine Problem-solving

In contrast to the general, heuristic-based human problem solving approach, most

machine problem solving techniques - that is to say, current AI technology - are much more

specialized. Machine learning techniques tend to focus on specific problems, achieving high

accuracy on these tasks but often performing little better than the baseline on others. In addition

to this, the tasks machines are best suited for are less complex. Machines excel at solving

mathematical problems and searching well-defined problem spaces, meaning they’re well suited

for (and outperform humans on) problems like calculus and chess. They can achieve significant

accuracy in more complex tasks as well, provided that the scope of the task is narrow enough;

Xu et al. found that AI chatbots in customer service can outperform humans for simple question

answering (Xu et al., 2020). Notably, this doesn’t necessarily entail an understanding of these

techniques, but rather a powerful imitative ability to generate the correct output for a task -

which, for many practical purposes, is enough.

However, when tested on these complex tasks with a broader scope, machine techniques

run into significant issues. Combined vision & language (V&L) tasks provide a solid basis on

which to compare human and machine problem-solving; these are tasks where an AI agent has to

combine visual and language inputs, “reason” about the environment depicted in the image, and

produce various natural language or simple classification outputs. In other words, they’re a

rudimentary analog to the problems humans have been evolutionarily optimized to perform.

However, the AI agents tend to achieve only superficial success on these tasks, often using

“clever” methods to exploit statistical happenings and avoid truly reasoning about the image

(Kafle et al., 2019). For example, an agent may be tasked with answering a question about the

spatial relationship between two objects in an image - say, an apple, and a table. The agent may
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have seen many example questions about apples and tables in the data it was trained on, and

learned that the relationship is usually that the apple rests on the table. By answering with this

common relationship, it has a good chance of increasing its accuracy, without considering any

visual input. Rather than learning to perform a complex task, machine methods tend to exploit

any statistical loopholes they’re given in order to increase their reported performance.

This is the crux of the difference between human and machine problem-solving: they

have evolved under vastly different selective pressures. While humans evolved general,

computationally suboptimal problem-solving techniques under natural selection, machine

problem solving has developed under artificial selection to perform well at specific tasks, often

in sterile, unrealistic environments. Human evolution was about survival in a complex

environment; machine evolution is about learning to give the correct response to a question

posed by researchers. This isn’t to say that the state of technology doesn’t play a part; obviously,

problem-solving at a human level is incredibly complex, and the human brain is much more

intricate than any system we can currently develop, but the selective pressure is still very real.

A Combined Approach

As Kafle et al. point out, these selective pressures - scoring AI agents on the basis of

providing the correct label, rather than whether they truly perform the task we set - hinder the

progress of AI as a field. A solution, then, would be to apply the correct pressure. This may be

easier said than done; wrangling machine learning systems into learning in a particular way is

notoriously difficult and often requires even more manipulation of datasets, problems, and

formulations, which can increase the abstract, artificial nature of the task. Nevertheless, various

innovative methods have been proposed, from formulating tasks which are impossible without a
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level of true understanding, to allowing models to answer unanswerable questions with “I don’t

know”. These methods seem promising, and may yet provide significant results and advances

(Kafle et al., 2019).

Another solution to the issue of differing pressures, and one which has seen significant

success, is to adopt the more human generalist problem solving approach. The most recent,

state-of-the-art language processing models use pretraining, a technique where a model is

allowed to sift through huge language corpora from which it learns a general structure of

language. Afterwards, the model can be trained on a relatively small number of examples of a

particular task, or even given a single sentence as a directive (Brown et al., 2020). The broad

understanding of language that the model builds, in a similar way to neural pathways shared

among different human task centers, allows it to achieve remarkably high performance on

multiple language-based tasks without adjustment. Recent systems based on these architectures

can perform natural language tasks like question answering and detecting logical entailment with

93.6% and 73.0% accuracies, respectively, compared to a human baseline of 95.1% and 97.4%

(Nangia & Bowman, 2019).

These models aren’t a silver bullet for building human-level AI, though. Since they’re

trained on such large language corpora, they take significant investment of time and effort to

build. This represents yet another “evolutionary pressure” on the development of AI; in

situations where specialized systems have comparable performance, the use of these generalist

pretrained models will be limited, since there exist good options which are less

resource-intensive. Performance on these tasks was also in a relatively “sterile” environment, as

the testing was done on a dataset rather than in a real-world setting. However, the use of AI

agents in practical applications continues to rise, which may provide interesting information on
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how well these techniques generalize from a lab environment to the real world over the next few

years.

Conclusion

Differing selective pressures between human and machine problem-solving have given

rise to very different results. While human problem-solving operates in computationally

suboptimal ways, it excels at generalizability due to a focus on heuristics and spatial/symbolic

reasoning, as well as multipurpose neural structures which can be used for many different

analogous tasks. Machine problem-solving, on the other hand, is excellent at specific tasks, but

less effective at complex or broad ones. While it can outperform humans in some areas, in

general it still lags behind. However, methods have emerged to combine the two, with powerful

and promising results.

In light of this, what state is the field of AI in? It seems clear that a strategy based around

combining elements of both problem-solving methods is desirable, and can enable strong

performance on a breadth of traditional machine learning tasks. It may even be useful for the

development of artificial general intelligence, an AI system which could perform as wide a

variety of tasks just as well as - or better than - a human could. It’s entirely possible, of course,

that methods of problem-solving which are vastly different from the human paradigm could be

much more effective for general intelligence, but these are of course difficult for us to

conceptualize, much less implement. Perhaps, given time, a problem-solving agent of our own

design, with a similar thought process to our own, could innovate on its own structure and bring

such a method to life. For now, though, both humans and machines will have to resign ourselves

to being jacks of many trades, but true masters of none.
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